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Abstract: A major concern regarding the ship safety is related to severe rolling oscillations which, in certain circumstances,
can even lead to its capsizing. Assuming the rolling motion decoupled from its other five possible motions, one results a
mathematical model associated to a second order differential equation where the main parameters (inertia, damping,
stiffness and excitation) reveal a significant nonlinearity. In the absence of exact analytical solutions, the amplitude and
period characteristics of the ship rolling can be evaluated by approximate numerical or analytical methods. In this work, we
checked if the performant differential transform method (DTM) and its improvement with Pade approximants is able to
provide approximate analytical solutions for nonlinear roll equation, valid for both the transitory and stationary states. The
obtained results were verified against those produced by MatLab numerical generated simulations. We noticed that for the
linearized roll equation, which describes quite correctly a significant part of the situations of practical interest, the DTM
doubled by the Pade approximation [4/4] offers the exact solution. If the nonlinear terms from damping and restoring
moments are included in the study but the sea is considered waveless, the investigated technique proves a good accuracy in
describing the attenuation over time of the initial excitation. DTM and Pade [4/4] cease to offer reasonable solutions as
soon as the exciting moment of the waves is included in the procedure. We gave clear explanations for this impasse and
showed that the use of higher-order Pade approximations can solve (even if with additional efforts) totally or at least
partially this problem.
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1. INTRODUCTION

The roll motion of a vessel in beam regular waters can be represented quite accurately by a second-order non-
linear differential equation with the roll angle as independent variable and nonlinear terms determined by the
models used for damping and restoring moments. Such kind of equation has been solved in the literature both by
numerically and analytically techniques, each havind disavantages and limitations [1 — 6].

In the present work, we concentrated on a semi-analytical approach proposed by Zhou [7] for initial value
problems in electrical engineering, called differential transform method (DTM for short). This technique gives
the solution as a power series around an arbitrary point in the variable domain (usually the origin). Inevitably,
the founded solution diverges relatively quickly by using the first few components of the series so that
modifications were thought by researchers to grow the radius of convergence. A remarkable improvement was
suggested by El-Shahed [8], who put together DTM with Laplace transform and Pade approximants to closely
estimate the solution of a differential equation by a small number of terms without using classical ideas as
liniarization, discretization, perturbation, round — off errors and so on. Another improvement is due to
Gokdogan et al. [9] and consists in dividing the domain of variables into small domains so the center of the
series changes on each subdomain and the independent variables remain relatively close to the center. The
drawback of this technique is the large number of subintervals required for accurate results. To overcome it,
Khatami et al. [10] used trigonometric functions instead of polynomial ones and succedded to significantly
increase the quality of the solution.

The rest of the paper is organized as follows: In the next section the basic ideas of DTM and Pade approximants
are briefly described. In Section 3, the DTM and its improvements are implemented to solve the roll equation in
different scenarios. The obtain results are put face to face with the numerical ones provided by the ode 45 solver
in Matlab. Finally, the Section 4 brings together the main conclusions of the study.
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2. MATERIALS AND METHODS

2.1 Basic idea of the differential transform method
An infinitely continuously differentiable function u: D — R can be developed in a Taylor series with the

center in point X, € D of form:

= 1 d*u(x) ’
uix)=)> — (X=X 1
) kzz;‘k! x|, (x=x) @
The differential transform of u(x) is defined as by:
_ 1du(x)
U(k)—ﬁ o X:X,keN 2

u(x) is called the original function while U(K) is the transformed function. The differential inverse transform of
U(K) is given by

a9 = U (Qx-x,) ®

Typically, the value X, =0 is chosen. In concrete problems, the function u(x) is expressed by a finite series

a2 3 U -, @

The number of terms m is determined by the rate of convergence of the series. When apply the DTM to a
differential equation, this is converted into an algebraic equation in the variable k and unknown U(k). The latter
will be obtained recursively.
The most used operations performed by DTM and which are also necessary in the present study are listed
below:

(i) If w(x) =u(x)xv(x), then W (k) =U (k) xV (k) ;

(i) If w(x)=Au(x), then W(k) =AU (k), A constant;

d"u(x)

Xn

(iii) If W(X) =

,then W(K)=(k+D)(k+2)-...-(K+n)U (k +n);
" 7k
(iv) If w(x) = Cos(a) X+ go), then W (k) = i COS(7 + (pj, @, @ constants.
2.2 Pade’s approximants

Let f be a function represented as a power series, f(X) = Zai x' . A Pade approximant [L, M] associated to f is
i=0

. . P (x .
a rational function of the form [L,M]= QL(( )) , where P and Q,, are polynomials of degree at most L,
X
M
respectively M. More precisely:
P.(X) = Py + PX+ P, X%+t P X", Qy (X) =0y + G X+ G, X% +...+ Gy X (5)

By amplifying the fraction P_/Q,, with a suitable constant, g, =1 can be obtained, which would reduce the
number of unknown coefficients in P_ and Q,, to L + M +1. From the formal equality

£(X) =P.(X)/Qy (X) < (8 + 8 X+3,X° +.. JL+ QX+ Gy XM )= Py + PiX+ oot P X" +O(XM)

by equating the coefficients of terms having the same degree, one obtains the system
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a, = Py
A ta G t...+a _y, 0y =0

a +a,0, = P, a ., +a g +...+a q, =0
at+a 0, +a,0,=p, and 4 -*2 Lt T T A _m2Ym ©)

a v ta v 0t +a gy =0

a +aqu1+ +a‘0qL pL

in qi,i=1,_M and p;, jzl,_l_.

It is obvious that different choices for L and M will lead to different approximants. To the question “What is the
best selection for L and M?” a partial answer is “L = M”. In addition, the numerical results presented in the
specialized literature show that the higher the values of L and M are, the better approximations are obtained for
the exact solution of the differential equation.

2.3 The ship’s roll equation
The ship rolling in a regular wave can be described precisely enough by the second order differential equation:

oo L] 03 L] L]
0+d,0+d, 6 +k 0+k,0° =mcoswt, 6(0) = 6,,0(0) = 6o @)

where d, and d, denote the linear and cubic roll damping coefficients, k, and Kk, the roll restoring moment
coefficients, m and @ the forcing amplitude and wave frequency, respectively. In addition, &€ is the roll angle
and an overdot signifies the time differentiation.

For numerical simulations, the coefficients d.,i =1,3 and k;,i =1,3 were adopted for a real ferry ship [11, 12]:

d, =0.01265913 s, d, =0.4954 s, k, =0.691997033 s%,k, =—0.53920393 s
3. RESULTS AND DISCUSSION
Applying the DTM to roll equation (7) yields the following recursive scheme:

(k+2)k +1)8(k +2)+d, (k +1)a(k +1 +d3zk:i (i+s)s—i+1)k—s+1)0(i+1)8(s—i+1)O(k —s+1)+

s=0 i=0

k
+k O(k)+k ZZQ i)0(s—i)0(k —s)= m%cos(”—kj (8)

s=0 i=0 2

0(0)=6,,0(1) =60 9)
Considering k =0,1....,5one finds the next terms involved in the series (4):

k=0:26(2)+d, 8(1)+d, 6°Q) +k,0(0)+k, 6°(0) =m
k =1:660(3)+2d,8(2)+6d, 8°(1)6(2)+k, 0(1)+ 3k, 68*(0)9(1)=0

2

k =2:126(4)+3d, 6(3)+ 3, (367(1)0(3)+ 40(1)6%(2))+ k, 6(2) + 3k, (67(0)6(2) + 6(0)6*(1))= — a;)

k =3:200(5)+4d, 6(4)+d, (12 6?(1)0(4) +86°(2)+ 36 6(1)9(2)0(3))+ k, 6(3) + (10)
+k, (362(0)0(3)+ °(1) + 66(0)0(1)A(2)) =0
k =4:300(6)+5d, 0(5)+ d, (15 62(1)0(5) + 48 O(1)0(2)6(4) + 27 O(L)6* (3)+ 36 62(2)(3))+ k, O(4) +
+k; (362(0)0(4)+ 60(0)0(1)0(3)+ 36(0)0*(2)+ 36*(1)9(2))=m ;)—;
k=5:4206(7)+6d, 6(6)+d, (18 6?(1)(6)+ 60 A(1)9(2)6(5) + 72 6(1)A(3)0(4) + 48 6% (2)6(4) +
+540(2)6%(3))+ k, 6(5)+ k,(36%(0)0(5)+ 6 6(0)0(1)0(4) + 6 0(0)0(2)0(3) + 362(1)6(3) + 36(1)6*(2)) = 0
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In what follows, we will exemplify the algorithm of DTM in three situations. In the first, we will approach the
linear roll equation that is, we will impose that d, =k, =0. In the second, we will include the nonlinear terms

in the study, but we will omit the perturbing moment of waves (m = 0). The solution given by DTM and its
improvements to the full roll equation will represent the last analysed case.

Casel: d; =k, =0
Equation (7) reduces to:

0+d, 0+k, 0 =mcos wt, B(0) = 6, 0(0) = s (1)
and has the exact solution:
0,u(t) =2 exp(— %tj sin(@, t + )+ Asin(ot + ¢) (12)
with

m d,w
,p=atan—1
\/(kl _wz)z +(d 1a))2 k-

and a, respectively ¢, constants provided by initial conditions.

The linear equation (11) represents a good substitution for (7) if the oscillation amplitudes do not exceed 10° —
15°, which covers a significant part of the situations encountered on sea.

Figure 1, which shows the roll amplitudes for the two models and for a wide range of pairs (a) m) reinforces
the previous statement. Notable differences between the two panels appear only in the area of amplitudes over
30°, which rather represent the exception (see also Table 1). The grid used in Figure 1 contains 201 x 201 =
40401 combinations (e, m).
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Fig. 1. The roll amplitudes determined with the nonlinear model (a), respective linear one (b),
for w [0.4, 1.0] and 0<m<0.1

Subcase 1.1: @=0.4,m=0.05,6(0)=0.1,6(0) =0
For this pair (@, m), (t) given by DTM is

Opy (1) =0.1-0.0096 t* +0.4051-10°t> +0.2201-10°t* — 0.1959 -10°t® — 0.3296 -10°t° +
+0.382-10"t" +0.356 -10 't° (13)
Figure 2a shows a comparison between the results provided by ode45 solver in Matlab and DTM approach. The

two solutions are close enough only for t < 5 after which, due to the high power of time variable, the DTM
solution diverges.
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Table 1. The distribution of roll amplitudes in value groups. The presented values were obtained from 40401 combinations
(,m)
Amplitude 00- 15° 15°- 30° 30°- 50° 50°- 90° > 9Q°
Nonlinear model | 24504 (60.05%) | 8827 (21.85%) | 6825 (16.89%) | 245 (0.61%) 0 (0%)
Linear model 25291 (62.60%) | 9224 (22.83%) | 3657 (9.05%) | 1169 (2.89%) | 1060 (2.62%)

The last one can be improved with the help of Pade approximants. If Pade [3/3] is selected, then:
F} _ 0.1s* +0.0076 s +0.0084 ~0.0299 N 0.0701s +0.0041
3] s*+0.0760s*+0.28615+0.0122 s+0.0442 (s+0.0159 f +0.5239°

Taking the inverse Laplace transform (L) to this rational function, one gets the solution:
A3 (t) = 0.0299 exp(— 0.0442t )+ (0.0701 cos 0.5239t +0.0078 sin 0.5239t )exp(—0.0159t) (14)

(a) o (b))
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Fig. 2: Ode45 solver solution versus DTM solution (a); DTM solution with Pade [3/3] (b); DTM solution with
Pade [4/4] (c, d) for @=0.4,m=0.05,0(0)=0.1,6(0) =0
Figure 2b shows that this solution manages to reveal the oscillatory character of the motion but underestimates

its amplitude. Let’s note, however, that Pade [3/3] uses only a part of the truncated series (13). On the other
hand, Pade [4/4] takes use of all the information given by (13) and its expression is:

F}_ 0.1s®+0.00135” +0.06605+0.0002  _0.0945+0.0003 _ 0.0065-0.0002
4] s*+0.0127 s> +0.8520 5% +0.0020 5 +0.1107 $?+0.16  (s-+0.0063) +0.8318

Applying again the transform L, one finds:
Q%41 (t) = 0.094 cos 0.4t +0.0075 sin 0.4t +(0.006 cos 0.8318t —0.00029 sin 0.8318t )exp(—0.0063t) (15)

Figures 2 c, d proves that the function (15) is in outstanding consensus with the numerical solution both for
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transitory and stationary stages of the motion.

Subcase 1.2: @=0.9,m=0.1,6(0)=0.1, é(O) =0

We chosed this pair (a) m) to demonstrate that the improvement brought by the Pade approximants to the DTM

solution produce the same beneficial effects not only in the case of the small-amplitude oscillations described
previously, but also for large amplitudes and complicated transient behaviors.

Figure 3, which contains the same type of information as Figure 2, shows that Pade [4/4] allows obtaining high-
quality approximate analytical solutions for linear roll equation. The three laws are:
Opmy (1) =0.1+0.0154 t* —0.6498 -10“t* —0.0043t* +0.1304 -10~*t* +0.1894 - 10°t°® -

—0.5574 -10°t" —0.3658 -10°t®
Q1331

15781 (t) = 0.1093 exp(— 0.0009t )+ (—0.0093 cos1.8226t +0.00011 sin 1.8226t )exp(—0.0013t) ~ (16)

AL (t) = —0.839 c0s 0.9t +0.081sin 0.9t +(0.939 cos 0.8318t —0.0735 sin 0.8318t )exp(—0.0063t)
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Fig. 3: The same type of results as in Fig. 2 but for ®=0.9,m=0.1.

Case Il: m=0
Equation (7) becomes:

. . o3 . .
0+d,0+d,0 +k 0+k,8° =0,0(0)=6,,6(0) = O (17)

and has no exact analytical solution. The oscillations described by (17) are damped with a rate of decay
depending on the coefficients d, and d,. Regardless the wave frequency @, for the initial conditions

6(0)=0.1, é(O) =0, we have that:

Opmy (1) =0.1-0.0343t% +0.1449 -10°t* +0.0019 t* —0.1771-10°t* - 0.3729 -10 *t° -
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~0.1232-10°°t” —0.308-10°t° (18)

and
A5 (t) = —0.0001 exp(—1.3053t )+ (0.1001 cos 0.8268t +0.00019 sin 0.8268t Jexp(—0.0034t)  (19)
AL 4 (t) = (0.1c050.82941 +0.000892 sin 0.8294t )exp(—0.00761) (20)

Figure 4a highlights the small radius of convergence of the truncated series (18). The solution (19) follows the
numerical one extremely well from the frequency point of view but overestimates the amplitude so that the

vanishing of the initial disturbance 9(0) will occur in a longer time (see Figure 4b). Finally, a comparison on

numerical results with g1*/4

bade (1) indicates the excellent accuracy of the solution (20) (see Figure 4c).
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Fig. 4: Comparison between numerical solution of (17) and (a) DTM solution (18), (b) 653 solution (19),
respectively, (c) G54 solution (20)

Case ll: m=0

This time, the solution obtained using Pade [4/4] is, for most combinations (a) m), far from the numerical one.
To understand the reason, let us follow Figure 5, which shows the position in the complex plane of the roots of
the polynomial Qs for ®=0.9, me [O, 0.15] and various initial seeds. To achieve a bordered periodic solution
at least two roots must be pure imaginary. The remaining roots may eventually have real, but negative, parts.
For example, in the linear case, for @ =0.9 the roots are r,, =+0.9i, r,, =—0.0063 +0.8318i regardless of
amplitude m.

Figure 5 shows that the four roots are, two by two, complex conjugates but, for overwhelming majority of m
values, the real parts are negative (the initial excitation is estinguishing in time) or positive (the solution tends to

infinity). The initial conditions significantly affect the location of the roots in the complex plane and there is a
risk that all roots have non-zero real parts (see Figure 5c).
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Fig. 5: The location of the roots of polynomial Q in the complex plane for ®=0.9, me [O, 0.15]

and the initial conditions:

(@ 6(0)=0.1, 8(0) = 0; (b) 6(0)=0.3, (0) = 0; () #(0)=0.4, 8(0) =0; (d) H(0)=0.0, H(0) =0.1

In figure 5d, zero real parts are obtained for m = 0.03566 and m = 0.00171. More precisely, for the two values of
amplitude m, the roots are +£1.6769i, 0.1652 +0.8458i and +0.8284i, —0.1573 +2.5643i. In the first

instance, the solution 0&,‘;’(146] is boundless (see Figure 6a) while for m = 0.00171 the roll oscillation amplitude is

overestimated (see Figure 6b).
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Fig. 6: Comparison between numerical solution of (7) and 8L solution for @ = 0.9, 6(0)=0.0, 1'9(0) =0.1

Pade

and (a) m = 0.03566; (b) m=0.00171.

To the question “How could we still use DTM and its improvements in solving equation (7) there could be more
attempts. We present below two of them.

Attempt 1:

A natural continuation of the previous study involves the use of higher-order Pade approximants. Considering
k =6,7,8,9 in the recursive scheme (8), one finds:

k =6:566(8)+7d, 0(7)+d, (2167 (1)0(7)+ 720(1)6(2)6(6) + 90 0(1)0(3)6(5) + 48 H(1)6% (4) +
+1446(2)6(3)6(4)+ 60 62(2)0(5)+ 27 6%(3))+ k,6(6) + k, (367(0)0(6) + 6 6(0)0(1)6(5) +

+6 0(0)9(2)0(4)+30(0)6%(3)+ 60(1)9(2)0(3) + 36*(1)0(4) + 6°(2)) = —m %

k =7:720(9)+8d, 0(8)+ d, (24 6*(1)9(8)+ 84 6(1)0(2)6(7) + 120 6(1)9(4)0(5) + 180 A(2)6(3)6(5) +
+108 O(L)0(3)0(6)+ 72 67(2)0(6) + 96 0(2)6% (4)+108 67(3)0(4))+ k, (7 )+ k(367 (0)0(7) +
+66(0)0(1)0(6)+66(0)0(3)0(4)+ 6 6(1)0(2)0(4)+ 36%(1)6(5)+ 30(1)6?(3) + 36(2)6(3))= 0

—_—~
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k =8:

906(10) +9d,0(9)+ d, (2767 (1)9(9)+ 966(1)6(2)0(8) + 126 6(1)6(3)6(7) +1446(1)6(4)0(6) +

+750(1)0% (5)+ 8462 (2)0(7) + 2160(2)0(3)0(6)+ 2406(2)0(4)6(5) + 13567 (3)0(5)+ 144 6(3)6° (4))
+k,0(8)+Kk,(367(0)0(8) +66(0)0(1)0(7)+ 66(0)0(2)0(6) + 66(0)A(3)6(5) + 30(0) 6 (4) +

608

5760

+302(1)0(6) + 60(1)0(2)6(5) + 60(1)0(3)O(4) + 36°(2)0(4) + 30(2)6%(3) )=m

k =9:1100(11) +10d,0(10)+ d, (3067 (1)9(10)+1086(1)6(2)0(9) + 1446(1)0(3)0(8) + 1680(1)0(4)0(7 ) +
+1500(2)9%(5)+1626%(3)0(6)+1800(1)9(5)0(6)+ 2520(2)0(3)8(7 ) + 966% (2)H(8) + 2886(2)6(4)6(6) +)
+3606(2)6(3)0(6)+ 646° (4))+ k,0(9) +k, (66(0)8(1)8(8) + 66(0)8(2)0(7) + 66(0)8(3)6(6) +
+66(0)0(4)0(5) +36%(0)0(9) + 360 (1)O(7) + 60(1)0(2)0(6) + 66(1) () H(5) + 60(2)(3)H(4) +

+30(1)6% (4) +36%(2)0(5))= 0

Like Pade [3/3], the Pade [5/5] approximant does not lead to sufficiently acceptable analytical solutions, so we
only refer to Pade [6/6]. Figure 7, which shows the variation with m of the real and imaginary parts of the roots

of polynom

ial Q, let us know that, as a rule, the six roots are settled into three complex conjugate pairs and have

non-zero real parts.

f
0.05 0.1 0.15

oo
oN»

10F T 20 T T
18:._‘_*-\/\\“‘*‘-\/ 10|»w'/\ /\s.,w____*i
201
30 , L 0 . "
0 0.05 0.1 0.15 0 0.05 0.1 0.15
T 0 * T
20
10_wm,\bf’we/\ 1 I‘
ok Y \‘ 7°
1 2 1
0
T

S T

0.05 0.1 0.15

real(roots(Q))

oo

T © T

S

‘ imlag(roots(Q))

0.05 01 0.15

o

0.05 0.1 0.15

&5 oo &5 oo
oo 85 oo oo

22oSR _888R _oR%
=

\" 1 2 1 E 1 k

]

i
"

I s [ O
—

- L
0.05 0.1 0.15

m m

Fig. 7: The real and imaginary parts of the roots of polynomial Q
in the Pade [6/6] approximant versus the wave amplitude m

[6/6]

Consequently, the long-term solution &5, cannot be periodic and bounded. In the short-term, i.e. for the first

tens of second, there is a good correlation between 6

Opaders.6) Ynum (@9

and %! as shown in Figure 8.
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Fig. 8: Comparison between numerical solution of (7) and 6%/ solution for
() =0.4,m=0.028: (b) @=0.9,m=0.030
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Attempt 2:
We highlighted before the fact that a severe limitation of DTM consists in the small radius of convergence. To
overcome this, the time interval can be divided in small subintervals of equal length h and compute the

truncated Taylor series (4) on each subinterval, X, (t) = ZU : (k)(t —t )k J=12..., where t, = (i—1)h and the
k=0

initial conditions on each subinterval [ti,tnl] are the values of Xx; and its temporal derivatives in t; [10]. In this

way, the values of t are no longer far from the center t; of the series.

Let us first gain some experience on the case of the damped oscillator analysed in case Il. From numerical point
of view, it will be important not only the length h of each subinterval [ti ,ti+l] but also the way in which the

derivative d@/dt(t;) is calculated. We chose the classical version %(ti)ze(ti)_e(ti_dt), where

B dt

dt=h/M , M positive integer.
Thus, for h <1 and dt <0.01 this technique generates an almost identical copy of the numerical solution (see
Figure 9a). If the value of dt is increased (that is, the derivative d&/ dt(ti) is approximated more imprecisely),

then the two curves gradually separate over time (see Figure 9b). Of course, a too high value for h, that is a large
distance from the center of the series, will lead to a poor approximation of the exact solution, regardless of dt
(see Figure 9c).
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Fig. 9: Numerical solution of (17) versus Modified DTM solution for:
(@ h=1,dt=0.001; (b) h=1,dt=0.1; (c) h=2, dt = 0.001;

Unfortunately, for the complete roll equation (7) this approach fails to generate a correct solution, no matter of
the time interval splitting. It is a problem that deserves to be investigating in more detail in a future paper and

that can be associated with the way in which the initial condition d&/dt(t, ) is imposed.
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4. CONCLUSIONS

In the paper, the differential transform method (DTM) and some improvements of it were employed to solve
approximately a nonlinear ship roll equation. The main conclusions of the study are as follows:

a) The algorithm of the method is clear and relatively easy to implement;

b) The original DTM, which involves writing the solution in the form of a truncated Taylor series, is capable of
producing reasonable results only for a small interval of time. By combining the DTM with Laplace transform
and Pade approximants, an improved version of the original method is created;

c) Using Pade [4/4], we managed to practically deduce the exact solution of the linearized roll equation, which
quite correctly described the roll oscillations with amplitudes below 10 — 15 degrees. The same approximant
allowed us to obtain a solution with a high degree of accuracy relative to the numerical solution (produced by
the ode 45 solver in Matlab) and for the nonlinear unforced roll equation;

d) When introducing into the nonlinear equation the wave perturbing moment, the improved DTM ceases to be
effective. We gave a clear explanation for this failure and made two attempts to ameliorate it. In the first, we
used the higher-order approximants Pade [5/5] and [6/6] while in the second we divided the time interval into
small subintervals to bring the variable closer to the center of the Taylor series. Even some progress was found
in the quality of the solution, it remained far from the numerical one both in terms of shape and amplitude.

We can therefore conclude that DTM encounters (even in its improved form) some problems in providing
sufficiently good approximate analytical solutions for differential equations that contain significant
nonlinearities and forcing terms.
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