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Abstract: A major concern regarding the ship safety is related to severe rolling oscillations which, in certain circumstances, 

can even lead to its capsizing. Assuming the rolling motion decoupled from its other five possible motions, one results a 

mathematical model associated to a second order differential equation where the main parameters (inertia, damping, 

stiffness and excitation) reveal a significant nonlinearity. In the absence of exact analytical solutions, the amplitude and 

period characteristics of the ship rolling can be evaluated by approximate numerical or analytical methods. In this work, we 

checked if the performant differential transform method (DTM) and its improvement with Pade approximants is able to 

provide approximate analytical solutions for nonlinear roll equation, valid for both the transitory and stationary states. The 

obtained results were verified against those produced by MatLab numerical generated simulations. We noticed that for the 

linearized roll equation, which describes quite correctly a significant part of the situations of practical interest, the DTM 

doubled by the Pade approximation [4/4] offers the exact solution. If the nonlinear terms from damping and restoring 

moments are included in the study but the sea is considered waveless, the investigated technique proves a good accuracy in 

describing the attenuation over time of the initial excitation. DTM and Pade [4/4] cease to offer reasonable solutions as 

soon as the exciting moment of the waves is included in the procedure. We gave clear explanations for this impasse and 

showed that the use of higher-order Pade approximations can solve (even if with additional efforts) totally or at least 

partially this problem. 

Key words: ship rolling, approximate solution, differential transform method. 

 

1. INTRODUCTION 
 

The roll motion of a vessel in beam regular waters can be represented quite accurately by a second-order non-

linear differential equation with the roll angle as independent variable and nonlinear terms determined by the 

models used for damping and restoring moments. Such kind of equation has been solved in the literature both by 

numerically and analytically techniques, each havind disavantages and limitations [1 – 6]. 

In the present work, we concentrated on a semi-analytical approach proposed by Zhou [7] for initial value 

problems in electrical engineering, called differential transform method (DTM for short). This technique gives 

the solution as a power series around an arbitrary point in the variable domain (usually the origin). Inevitably, 

the founded solution diverges relatively quickly by using the first few components of the series so that 

modifications were thought by researchers to grow the radius of convergence. A remarkable improvement was 

suggested by El-Shahed [8], who put together DTM with Laplace transform and Pade approximants to closely 

estimate the solution of a differential equation by a small number of terms without using classical ideas as 

liniarization, discretization, perturbation, round – off errors and so on. Another improvement is due to 

Gokdogan et al. [9] and consists in dividing the domain of variables into small domains so the center of the 

series changes on each subdomain and the independent variables remain relatively close to the center. The 

drawback of this technique is the large number of subintervals required for accurate results. To overcome it, 

Khatami et al. [10] used trigonometric functions instead of polynomial ones and succedded to significantly 

increase the quality of the solution. 

The rest of the paper is organized as follows: In the next section the basic ideas of DTM and Pade approximants 

are briefly described. In Section 3, the DTM and its improvements are implemented to solve the roll equation in 

different scenarios. The obtain results are put face to face with the numerical ones provided by the ode 45 solver 

in Matlab. Finally, the Section 4 brings together the main conclusions of the study. 
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2. MATERIALS AND METHODS 

 

2.1 Basic idea of the differential transform method 

An infinitely continuously differentiable function RDu →:  can be developed in a Taylor series with the 

center in point Dx 0  of form: 
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The differential transform of u(x) is defined as by: 
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u(x) is called the original function while U(k) is the transformed function. The differential inverse transform of 

U(k) is given by  

                                                                       ( )


=

−=
0

0)()(
k

k
xxkUxu                                                                (3) 

 

Typically, the value 00 =x  is chosen. In concrete problems, the function u(x) is expressed by a finite series  
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The number of terms m is determined by the rate of convergence of the series. When apply the DTM to a 

differential equation, this is converted into an algebraic equation in the variable k and unknown U(k). The latter 

will be obtained recursively. 

The most used operations performed by DTM and which are also necessary in the present study are listed 

below: 

(i) If )()()( xvxuxw = , then )()()( kVkUkW = ; 
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2.2 Pade’s approximants 

Let f be a function represented as a power series, 

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a rational function of the form 
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L= , where LP  and MQ  are polynomials of degree at most L, 

respectively M. More precisely: 
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By amplifying the fraction ML QP /  with a suitable constant, 10 =q  can be obtained, which would reduce the 

number of unknown coefficients in LP  and MQ  to L + M +1. From the formal equality 
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by equating the coefficients of terms having the same degree, one obtains the system 
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in Miqi ,1, =  and Ljp j ,1, = . 

It is obvious that different choices for L and M will lead to different approximants. To the question “What is the 

best selection for L and M?” a partial answer is “L = M”. In addition, the numerical results presented in the 

specialized literature show that the higher the values of L and M are, the better approximations are obtained for 

the exact solution of the differential equation. 

 

2.3 The ship’s roll equation 

The ship rolling in a regular wave can be described precisely enough by the second order differential equation: 
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where 1d  and 3d denote the linear and cubic roll damping coefficients, 1k  and 3k  the roll restoring moment 
coefficients, m and   the forcing amplitude and wave frequency, respectively. In addition,   is the roll angle 
and an overdot signifies the time differentiation.  
For numerical simulations, the coefficients 3,1, =idi  and 3,1, =iki  were adopted for a real ferry ship [11, 12]: 
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3. RESULTS AND DISCUSSION 
 
Applying the DTM to roll equation (7) yields the following recursive scheme:  
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Considering 5,...,1,0=k one finds the next terms involved in the series (4): 
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In what follows, we will exemplify the algorithm of DTM in three situations. In the first, we will approach the 

linear roll equation that is, we will impose that 033 == kd . In the second, we will include the nonlinear terms 

in the study, but we will omit the perturbing moment of waves (m = 0). The solution given by DTM and its 

improvements to the full roll equation will represent the last analysed case. 

 

Case I: 033 == kd  

Equation (7) reduces to: 

                                                 0011 )0(,)0(,cos
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and a, respectively  , constants provided by initial conditions. 

The linear equation (11) represents a good substitution for (7) if the oscillation amplitudes do not exceed 100 – 

150, which covers a significant part of the situations encountered on sea.  

Figure 1, which shows the roll amplitudes for the two models and for a wide range of pairs ( )m,  reinforces 

the previous statement. Notable differences between the two panels appear only in the area of amplitudes over 

300, which rather represent the exception (see also Table 1). The grid used in Figure 1 contains 201 x 201 = 

40401 combinations ( )m, . 
 

 
 

(a)                                                                            (b) 
 

Fig. 1. The roll amplitudes determined with the nonlinear model (a), respective linear one (b),  

for  0.1,4.0  and 0 ≤ m ≤ 0.1  

 

Subcase 1.1: ( ) 0)0(,1.00,05.0,4.0 ====
•

 m  

For this pair ( )m, , ( )t  given by DTM is  
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Figure 2a shows a comparison between the results provided by ode45 solver in Matlab and DTM approach. The 

two solutions are close enough only for t < 5 after which, due to the high power of time variable, the DTM 

solution diverges. 
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Table 1. The distribution of roll amplitudes in value groups. The presented values were obtained from 40401 combinations 

( )m,  

Amplitude 00 - 150 150 - 300 300 - 500 500 - 900 > 900 

Nonlinear model 24504 (60.05%) 8827 (21.85%) 6825 (16.89%) 245 (0.61%) 0 (0%) 

Linear model 25291 (62.60%) 9224 (22.83%) 3657 (9.05%) 1169 (2.89%) 1060 (2.62%) 

 

The last one can be improved with the help of Pade approximants. If Pade [3/3] is selected, then: 
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Taking the inverse Laplace transform (L-1) to this rational function, one gets the solution: 
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Fig. 2: Ode45 solver solution versus DTM solution (a); DTM solution with Pade [3/3] (b); DTM solution with 

Pade [4/4] (c, d) for ( ) 0)0(,1.00,05.0,4.0 ====
•

 m  

 

Figure 2b shows that this solution manages to reveal the oscillatory character of the motion but underestimates 

its amplitude. Let’s note, however, that Pade [3/3] uses only a part of the truncated series (13). On the other 

hand, Pade [4/4] takes use of all the information given by (13) and its expression is: 
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Applying again the transform L-1, one finds: 
 

( ) ( )ttttttPade 0063.0exp8318.0sin00029.08318.0cos006.04.0sin0075.04.0cos094.0)(]4/4[ −−++=   (15) 

 

Figures 2 c, d proves that the function (15) is in outstanding consensus with the numerical solution both for 
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transitory and stationary stages of the motion. 

 

Subcase 1.2: ( ) 0)0(,1.00,1.0,9.0 ====
•

 m  

We chosed this pair ( )m,  to demonstrate that the improvement brought by the Pade approximants to the DTM 

solution produce the same beneficial effects not only in the case of the small-amplitude oscillations described 

previously, but also for large amplitudes and complicated transient behaviors. 

Figure 3, which contains the same type of information as Figure 2, shows that Pade [4/4] allows obtaining high-

quality approximate analytical solutions for linear roll equation. The three laws are: 
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Fig. 3: The same type of results as in Fig. 2 but for .1.0,9.0 == m  

 

Case II: 0=m  

Equation (7) becomes: 
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and has no exact analytical solution. The oscillations described by (17) are damped with a rate of decay 

depending on the coefficients 1d  and 3d . Regardless the wave frequency  , for the initial conditions 

( ) 0)0(,1.00 ==
•

 , we have that: 
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and 

      ( ) ( ) ( )tttttPade 0034.0exp8268.0sin00019.08268.0cos1001.03053.1exp0001.0)(]3/3[ −++−−=        (19) 
 

                            ( ) ( )ttttPade 0076.0exp8294.0sin000892.08294.0cos1.0)(]4/4[ −+                                  (20) 

 

Figure 4a highlights the small radius of convergence of the truncated series (18). The solution (19) follows the 

numerical one extremely well from the frequency point of view but overestimates the amplitude so that the 

vanishing of the initial disturbance ( )0  will occur in a longer time (see Figure 4b). Finally, a comparison on 

numerical results with )(]4/4[ tPade indicates the excellent accuracy of the solution (20) (see Figure 4c). 

 

 
 

Fig. 4: Comparison between numerical solution of (17) and (a) DTM solution (18), (b) 
]3/3[

Pade  solution (19), 

respectively, (c) 
]4/4[

Pade  solution (20) 

 

Case II: 0m  

This time, the solution obtained using Pade [4/4] is, for most combinations ( )m, , far from the numerical one. 

To understand the reason, let us follow Figure 5, which shows the position in the complex plane of the roots of 

the polynomial Q4 for 9.0= ,  15.0,0m  and various initial seeds. To achieve a bordered periodic solution 

at least two roots must be pure imaginary. The remaining roots may eventually have real, but negative, parts. 

For example, in the linear case, for 9.0=  the roots are ir 9.02,1 = , ir 8318.00063.04,3 −=  regardless of 

amplitude m.  

Figure 5 shows that the four roots are, two by two, complex conjugates but, for overwhelming majority of m 

values, the real parts are negative (the initial excitation is estinguishing in time) or positive (the solution tends to 

infinity). The initial conditions significantly affect the location of the roots in the complex plane and there is a 

risk that all roots have non-zero real parts (see Figure 5c). 
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Fig. 5: The location of the roots of polynomial Q in the complex plane for 9.0= ,  15.0,0m   

and the initial conditions: 

 (a) ( ) 0)0(,1.00 ==
•

 ; (b) ( ) 0)0(,3.00 ==
•

 ; (c) ( ) 0)0(,4.00 ==
•

 ; (d) ( ) 1.0)0(,0.00 ==
•

  

 

In figure 5d, zero real parts are obtained for m = 0.03566 and m = 0.00171. More precisely, for the two values of 

amplitude m, the roots are ,6769.1 i  i8458.01652.0   and ,8284.0 i  i5643.21573.0 − . In the first 

instance, the solution 
]4/4[

Pade  is boundless (see Figure 6a) while for m = 0.00171 the roll oscillation amplitude is 

overestimated (see Figure 6b). 
 

        
 

Fig. 6: Comparison between numerical solution of (7) and 
]4/4[

Pade  solution for 9.0= , ( ) 1.0)0(,0.00 ==
•

  

and (a) m = 0.03566; (b) m = 0.00171. 

 

To the question “How could we still use DTM and its improvements in solving equation (7) there could be more 

attempts. We present below two of them. 

 

Attempt 1:  

A natural continuation of the previous study involves the use of higher-order Pade approximants. Considering 

9,8,7,6=k  in the recursive scheme (8), one finds: 
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( ) ( ) ( ) ) ( +++++++ )6()3()0(6)7()2()0(6)8()1()0(6)9()4(64632360 31

3  kk  

+++++++ )4()3()2(6)5()3()1(6)6()2()1(6)7()1(3)9()0(3)5()4()0(6 22   

) 0)5()2(3)4()1(3 22 =++   

 

Like Pade [3/3], the Pade [5/5] approximant does not lead to sufficiently acceptable analytical solutions, so we 

only refer to Pade [6/6]. Figure 7, which shows the variation with m of the real and imaginary parts of the roots 

of polynomial Q, let us know that, as a rule, the six roots are settled into three complex conjugate pairs and have 

non-zero real parts. 
 

 
 

Fig. 7: The real and imaginary parts of the roots of polynomial Q  

in the Pade [6/6] approximant versus the wave amplitude m 

 

Consequently, the long-term solution 
]6/6[

Pade  cannot be periodic and bounded. In the short-term, i.e. for the first 

tens of second, there is a good correlation between 
num  and 

]6/6[

Pade , as shown in Figure 8. 
 

        
 

Fig. 8: Comparison between numerical solution of (7) and 
]6/6[

Pade  solution for  

(a) 028.0,4.0 == m ; (b) 030.0,9.0 == m  
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Attempt 2:  

We highlighted before the fact that a severe limitation of DTM consists in the small radius of convergence. To 

overcome this, the time interval can be divided in small subintervals of equal length h and compute the 

truncated Taylor series (4) on each subinterval, ( )
=

=−=
m

k

k

iii ittkUtx
0

,...2,1,)()( , where hiti )1( −=  and the 

initial conditions on each subinterval  1, +ii tt  are the values of ix  and its temporal derivatives in it  [10]. In this 

way, the values of t are no longer far from the center it  of the series.  

Let us first gain some experience on the case of the damped oscillator analysed in case II. From numerical point 

of view, it will be important not only the length h of each subinterval  1, +ii tt  but also the way in which the 

derivative ( )itdtd /  is calculated. We chose the classical version ( )
( ) ( )

dt

dttt
t

dt

d ii
i

−−



, where 

Mhdt /= , M positive integer.  

Thus, for 1h  and 01.0dt  this technique generates an almost identical copy of the numerical solution (see 

Figure 9a). If the value of dt is increased (that is, the derivative ( )itdtd /  is approximated more imprecisely), 

then the two curves gradually separate over time (see Figure 9b). Of course, a too high value for h, that is a large 

distance from the center of the series, will lead to a poor approximation of the exact solution, regardless of dt 

(see Figure 9c). 
 

        
 

 
 

Fig. 9: Numerical solution of (17) versus Modified DTM solution for: 

(a) h = 1, dt = 0.001; (b) h = 1, dt = 0.1; (c) h = 2, dt = 0.001; 
 

Unfortunately, for the complete roll equation (7) this approach fails to generate a correct solution, no matter of 

the time interval splitting. It is a problem that deserves to be investigating in more detail in a future paper and 

that can be associated with the way in which the initial condition ( )itdtd /  is imposed. 
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4. CONCLUSIONS 
 
In the paper, the differential transform method (DTM) and some improvements of it were employed to solve 
approximately a nonlinear ship roll equation. The main conclusions of the study are as follows: 
a) The algorithm of the method is clear and relatively easy to implement; 
b) The original DTM, which involves writing the solution in the form of a truncated Taylor series, is capable of 
producing reasonable results only for a small interval of time. By combining the DTM with Laplace transform 
and Pade approximants, an improved version of the original method is created; 
c) Using Pade [4/4], we managed to practically deduce the exact solution of the linearized roll equation, which 
quite correctly described the roll oscillations with amplitudes below 10 – 15 degrees. The same approximant 
allowed us to obtain a solution with a high degree of accuracy relative to the numerical solution (produced by 
the ode 45 solver in Matlab) and for the nonlinear unforced roll equation; 
d) When introducing into the nonlinear equation the wave perturbing moment, the improved DTM ceases to be 
effective. We gave a clear explanation for this failure and made two attempts to ameliorate it. In the first, we 
used the higher-order approximants Pade [5/5] and [6/6] while in the second we divided the time interval into 
small subintervals to bring the variable closer to the center of the Taylor series. Even some progress was found 
in the quality of the solution, it remained far from the numerical one both in terms of shape and amplitude. 
We can therefore conclude that DTM encounters (even in its improved form) some problems in providing 
sufficiently good approximate analytical solutions for differential equations that contain significant 
nonlinearities and forcing terms. 
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